

Introduction from Secretary Nicole Majeski

Introductions

Presenters:

- DelDOT recently formed Division of Transportation Resiliency & Sustainability
 - Jim Pappas, P.E. Director
 - Stephanie Johnson Assistant Director
- AECOM Planning and Design Consultant
 - Joe Hofstee, P.E. Project Manager
 - Kira Murphy Marine Structural Engineer
 - Marge Quinn Planning Manager
- Remline Public Outreach Consultant
 - Danielle Lloyd Outreach and Engagement Director

Agenda

- Expectations for the Workshop and the Study
- Study's Purpose and Need
- Study Areas
- Coastal Model
- Flood Mitigation/Protection
- Evaluation Criteria
- Path Forward
- How to Stay Involved
- Questions and Answers

Workshop Expectations

- First Workshop there will be more to follow
- Why Are We Here?
 - Kick-off the study
 - Begin public engagement
 - Start conversations
 - Understand community needs
- How to Provide Comments or Ask Questions?
 - Tonight, use the meeting's Q&A function, anytime during the presentation and during the question-and-answer period, to offer comments or ask a question
 - Anytime, fill-out a comment form on the project's website https://de.gov/sr1coastalcorridor
 - Anytime, send an e-mail <u>dotpublic@delaware.gov</u>

Study Expectations

SR1 Coastal Corridor Resiliency Study Timeline

Purpose and Need

- What is the purpose of the Study?
 - Establish existing and future conditions.
 - Identify a range of potential mitigation alternatives.
 - Establish criteria to evaluate the potential mitigation alternatives.
 - Evaluate the conceptual mitigation alternatives.
 - Work with public and stakeholders, determine preferred alternatives.

Purpose and Need

- Why is this Study needed?
 - SR1 is the Primary Evacuation Route for Bethany Beach, South Bethany Beach, Fenwick Island, and Ocean City Maryland.
 - Closure of SR1 between Indian River Bridge and Dewey Beach results in a 18 mile detour.
 - Improve the overall resiliency of SR1 to reduce maintenance cost and ensure a direct route of travel.
 - Supports the 2016 Multi-Jurisdictional All Hazard Mitigation Plan and the 2018 State of Delaware All Hazards Mitigation Plan.
 - SR1 is vital to the economic well-being of the area and the State as a whole.
 - SR1 provides the link for those looking to visit the Delaware beaches and provides year-round travelers and residents ease of access to coastal communities.

Study Area

- Sixteen (16) miles of State Route1 (SR1) Coastal Highway
- Northern Limits
 - Dewey Beach New Orleans Street
- Southern Limits
 - Maryland State Line

Study Area – Proposed Segments

Six (6) Segments – based on surrounding terrain conditions

Study Area – Dewey Beach to North Bethany Beach

SEGMENT 1 SEGMENT 2 SEGMENT 3

Study Area – Bethany Beach to Maryland

SEGMENT 4 SEGMENT 5 SEGMENT 6

Study Area – Existing Elevations

SR1 Bayside Average Grade

NOTE: ELEVATIONS ARE PRELIMINARY AND BASED ON LIDAR DATA

Coastal Models

Will establish existing and future conditions

- Regional and Local Model
- Sediment Transport Model
- Analyze bayside and oceanside

Domain of Regional Model

Domain of Local Model

Coastal Model – Regional Model

Regional Model is needed to provide information to the local Model

Input:

- Hurricane best track data/syntenic to generate cyclone.
- Tidal information
- Other spatial attributes.

Outputs:

- Water level
- Wave information

Regional Model

Coastal Model – Local Model

Local Model to simulate wave heights at study area sites under different scenarios

Input:

- Output from the regional model
- Water levels from FEMA Flood Insurance Study
- Extreme wave condition based on US Wave Information Study station (NOAA)
- Extreme wind condition based on local airport wind station
- Sea Level Rise incorporated

Outputs:

- Local wave conditions for different scenarios.
- Wave information for sediment transport simulation

Examples of Primary Flood Mitigation/Protection

BURIED FLOODWALL / STRUCTURAL DUNE
MANTALOKING, NJ, MOTT MACDONALD

SHORT-TERM DEPLOYABLES
TRAP BAGS SARASOTA, FLORIDA

PERMANENT DEPLOYABLES FLIP UP GATES BLOOMSBURG, PENNSYLVANIA

RAISED & REROUTED ROADWAYS

STATE ROUTE 54, SUSSEX COUNTY, DELAWARE

Examples of Secondary Flood Mitigation/Protection

LIVING SHORELINES
ORLEANS, MA

REVETMENTS MAYPORT, GEORGIA

Evaluation Criteria

Criteria	Explanation
Level of Flood Protection	The water elevation that the countermeasure would protect up to.
Construction Cost	Estimated \$ to build including right of way acquisition & utility relocation costs.
Operations & Maintenance Cost	Estimated annual \$ to maintain the improved infrastructure over its lifecycle.
Physical Constraints	Estimated amount of time needed, right-of-way needed, and other physical constraints present.
Benefit-Cost Ratio	Compares future risk reduction benefits to its costs.
Environmental Effects	Benefits & impacts to the natural environment (carbon reduction, wildlife habitats, etc.
Community Effects	Benefits & impacts to the built environment (traffic volumes, travel times, etc.)
Aesthetics/Visual Effects	Visual effects (community impression, aesthetics, etc.)

Next Steps

- Model the following storm events for each of the six segments:
 - 10-year storm event for existing and future condition
 - 100-year storm event for existing and future conditions
- Perform erosion analysis.
- Apply the evaluation criteria to the various mitigation alternatives.

- Hold the second public workshop in early 2023.
- Prepare report of the findings.
- Prioritize segments and mitigation alternatives.
- Identify and submit grant applications to advance the study recommendations into projects for design.

How to Stay Involved

Questions and Answers

Thank you for joining the Online Informational Meeting!

The next presentation will begin at 6:00pm.

